Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology.

نویسندگان

  • Gregory A Christoforidis
  • Allahyar Kangarlu
  • Amir M Abduljalil
  • Petra Schmalbrock
  • Abhik Chaudhry
  • Alan Yates
  • Donald W Chakeres
چکیده

BACKGROUND AND PURPOSE Imaging methods are currently being optimized in an attempt to assess and monitor angiogenesis in vivo. The purpose of this investigation was to determine whether areas of apparently increased tumor vascularity, as identified on 8-T gradient-echo (GE) imaging of a known glioblastoma multiforme (GBM), corresponds to foci of increased microvascularity on histopathologic analysis. METHODS We performed postmortem in situ, high-resolution GE 8-T MR imaging of the brain in a 53-year-old woman with GBM. Ten histopathologic specimens in the region of the tumor bed were studied by using hematoxylin-eosin and reticulin stains. MR and histopathologic results were assessed and compared for microvascular size and density. RESULTS 8-T GE images showed small, penetrating vessels in the gray matter and white matter. The images, however, were partly inhomogeneous as a result of local magnetic field inhomogeneities adjacent to the skull base and aerated paranasal sinus structures. 8-T MR images demonstrated serpiginous areas of signal intensity loss, which were thought to represent areas of increased microvascularity. Areas of lower microvascularity in the tumor bed corresponded to areas of lower vascularity on histopathologic sections with smaller vessel diameters. There was concurrence between vascular size predicted by histopathologic analysis and 8-T MR imaging in nine of nine biopsy samples. Vascular density agreed in seven of nine biopsy samples. CONCLUSION Our pilot data suggest that microvascularity in GBM can be identified by use of high-resolution, GE, 8-T MR imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging.

We used 8-T high-spatial-resolution gradient-echo MR imaging to directly visualize microvascularity in pathologically proved glioblastoma multiforme. Images were compared with 1.5-T high-spatial-resolution fast spin-echo T2-weighted images and digital subtraction angiograms. Preliminary data indicate that 8-T high-spatial-resolution MR imaging may enable the identification of areas of abnormal ...

متن کامل

The clinical relevance and scientific potential of ultra high-field-strength MR imaging.

As neuroradiologists, we are fortunate to work with the ever-advancing MR imaging technology. MR imaging has evolved as a robust and highly versatile clinical tool. In addition, MR imaging has caused dramatic changes in the clinical evaluation of a host of neurologic disorders; a well-recognized example is the role of diffusion-weighted imaging in acute stroke. Such advances typically stem from...

متن کامل

Differentiation of active tumor from edematous regions of glioblastoma multiform tumor in diffusion MR images using heterogeneity analysis method

Background: Due to intrinsic heterogeneity of cellular distribution and density within diffusion weighted images (DWI) of glioblastoma multiform (GBM) tumors, differentiation of active tumor and peri-tumoral edema regions within these tumors is challenging. The aim of this paper was to take advantage of the differences among heterogeneity of active tumor and edematous regions within the gliobla...

متن کامل

SWI: Probe for neuroradiologists

Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...

متن کامل

SWI: Probe for neuroradiologists

Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2004